Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Anisotropic magnetic properties of $ErRu_2Si_2$ as a consequence of the local symmetry

R. Michalski¹, Z. Ropka², R.J. Radwanski¹

- ¹ Inst. of Physics, Pedagogical University, 30-084 Krakow Center for Solid State Physics, S^{nt} Filip 5, 31-150 Krakow
- ² Center for Solid State Physics, S^{nt} Filip 5, 31-150 Krakow

ErRu₂Si₂ exhibits layered antiferromagnetic order below T_N =6K and shows large magnetocrystalline anisotropy with the easy axis [110]. The magnetization at 7T, applied along this axis, reaches 8.58 μ_B /f.u. whereas along the tetragonal axis only 0.5 μ_B /f.u. Moreover, ErRu₂Si₂ exhibits the substantial in-plane anisotropy. We have attributed the magnetism of ErRu₂Si₂ to the Er ions. Performed calculations of the fine electronic structure of the Er³⁺ ions taking into account crystal-field (CEF) and inter-site spin-dependent exchange interactions reproduce well the zero-temperature moment, temperature dependence of the magnetic susceptibility, single-crystalline anisotropic magnetization curves and the overall specific heat with the sharp λ -type peak at T_N .

The obtained CEF interactions in $ErRu_2Si_2$ are in good agreement with those obtained for $PrRu_2Si_2$ indicating the single-ion origin of the giant anisotropic propeties of this family of intermetallic compounds.